Folia Geographica 2021, 63/1, pp. 5-18
DETERMINATION OF DISSECTION INDEX (DI) USING GIS & RS TECHNIQUES: A CASE STUDY ON DRENICA RIVER BASIN
Albert BERILA A, Florim ISUFI B*
Received: October 17, 2020 | Revised: January 5, 2021 | Accepted: January 12, 2021
Paper No. 21-63/1-574
A University of Prishtina, George Bush, 31, 10000, Prishtina, Kosovo![]()
https://orcid.org/0000-0003-0754-269X
albert.berila1@student.uni-pr.edu
B* University of Prishtina, George Bush, 31, 10000, Prishtina, Kosovo![]()
https://orcid.org/0000-0002-1201-9484
florim.isufi@uni-pr.edu (corresponding author)
Abstract
Advances in Remote Sensing (Digital Elevation Models) products and GIS techniques have made the calculation and analysis of morphometric indices much more accurate, effective, and less time-consuming. Dissection index (Di) is a morphometric parameter that indicates the degree of dissection or vertical erosion and the stage of landform development. Calculating morphometric parameters by manual methods is inconvenient because it takes a long time, is subject to mistakes that can be made by humans when extracting these parameters and, consequently leads to wrong conclusions. There is currently no fully automated method to calculate this parameter. The purpose of this paper is to define the procedures for extracting this parameter within a GIS environment using data from high resolution (HR) ALOS-PALSAR (Advanced Land Observing Satellite-Phased Array-Type L-band Synthetic Aperture Radar) Radiometrically Terrain Corrected (RTC) DEM with a spatial resolution of 12.5 m with the help of ArcGIS software. To calculate this parameter, a grid with 1×1 km cells with interpolation points in each cell was constructed. IDW was chosen as the most suitable method for the interpolation of points. Based on the obtained results, the extreme values of Di for the Drenica River basin ranged from 0 – 0.46. 90.54% of the surface belongs to the low and very low values of Di, 9.11% belongs to the average values while only 0.35% belongs to the high values of Di. The high participation of small values of this index for the Drenica River basin indicates that river erosion is very low and the total area is increasing towards the creation of flat surfaces. The relief dissection index can be used for various purposes, such as contributing to a better understanding of the spatial distribution of morphogenetic processes, relief segmentation, and landscape units that serve as the basis for geomorphological mapping work, study the balance between pedogenesis and morphogenesis, and the assessment of environmental vulnerability.
Key words Dissection index, morphometry, GIS, DEM, geoprocessing, Drenica River basin.
REFERENCES
- ALQAHTANI, F., QADDAH, A. A. (2019). GIS digital mapping of flood hazard in Jeddah–Makkah region from morphometric analysis. Arabian Journal of Geosciences, 12(6), 11. DOI.
- CREVENNAA, A. B., RODRIGUEZ, V. T., SORANI, V., FRAME, D. ORTIZ, M. A. (2005). Geomorphometric Analysis for Characterizing Landforms in Morelos State, Mexico. Geomorphology, 67(3-4), 407–422. https://doi.org/10.1016/j.geomorph.2004.11.007
- DIKAU, R., BRABB, E. E., MARK. M. R. (1991). Landform classification of New Mexico by computer. U.S. Dept. of the Interior, U.S. Geological Survey, 1-15. https://doi.org/10.3133/ofr91634
- DOBOS, E., DAROUSSIN, J., MONTANARELLA, L. (2010). A quantitative procedure for building physiographic units supporting a global SOTER database. Hungarian Geographical Bulletin, 59(2), 181-205.
- HANCOCK, G.R., MARTINEZ, C., EVANS, K. G. and MOLIERE, D. R. (2006). A Comparison of SRTM and High-resolution Digital Elevation Models and their Use in Catchment Geomorphology and Hydrology: Australian Examples. Earth Surface Processes and Landforms, 31(11), 1394 – 1412. https://doi.org/10.1002/esp.1335
- JOHNSTON, K., HOEF, J. M. V., KRIVORUCHKO, K., LUCAS, N. (2001). Using ArcGIS geostatistical analyst. New York: Environmental systems research institute Inc. 50.
- KANTH, T. A. and HASSAN, Z. (2012). Morphometric Analysis and Prioritization of Watersheds for Soil and Water Resource Management in Wular Catchment Using Geo-Spatial Tools. International Journal of Geology, Earth and Environmental Sciences, 2(1), 30-41.
- KHAL, M., ALGOUTI, A., ALGOUTI, A., AKDIM, N., STANKEVICH, A. S., MENENTI, M. (2020). Evaluation of Open Digital Elevation Models: estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco. AIMS Geosciences, 6(2), 236. https://doi.org/10.3934/geosci.2020014
- LIU, Y. (2008). An Evaluation on the Data Quality of SRTM DEM at the Alpine and Plateau Area, North-western of China. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 1123 – 1127.
- MAGESH, N. S., JITHESHLAL, K. V., CHANDRASEKAR, N., JINI, K. V. (2012). GIS based Morphometric Evaluation of Chimmini and Mupily Watersheds, Parts of Western Ghats, Thrissur District, Kerala, India. Earth Science Informatics, 5 (2), 111–121. https://doi.org/10.1007/s12145-012-0101-3
- MARKOSE, V. J., DINESH, A. C. and JAYAPPA, K. S. (2014). Quantitative Analysis of Morphometric Parameters of Kali River Basin, Southern India, Using Bearing Azimuth and Drainage (bAd) Calculator and GIS. Environmental Earth Sciences, 72(8), 2887-2903, https://doi.org/10.1007/s12665-014-3193-x
- MIRZAEI, R., SAKIZADEH, M., (2016). Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environmental Science and Pollution Research, 23(3), 2758–2769. https://doi.org/10.1007/s11356-015-5507-2
- MOORE, I. D., GRAYSON, R. B., LADSON, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
- MUKHERJEE, S., SASHTRI, S., GUPTA, M., PANT, M. K., SINGH, C., SINGH, S. K., SRIVASTAVA, P. K., ShARMA, K. K. (2007). Integrated water resource management using remote sensing and geophysical techniques: Aravali quartzite, Delhi, India. Journal of Environmental Hydrology, 15 (4), 1-10.
- MUKHERJEE, S., SHASHTRI, S., SINGH, C., SRIVASTAVA, P. K., GUPTA, M. (2009). Effect of canal on land use/land cover using remote sensing and GIS, Journal of the Indian Society of Remote Sensing, 37 (3), 527–537, https://doi.org/10.1007/s12524-009-0042-6
- NIR, D. (1957). The Ratio of Relative and Absolute Altitude of Mt. Carmel. Geographical Review, 47(4), 564-569.
- OLIVEIRA, P. T. S., SOBRINHO, T. A., STEFFEN, J. L., RODRIGUES, D. B. B. (2010). Caracterização morfométrica de bacias hidrográficas através de dados SRTM. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(8), 819-825. http://dx.doi.org/10.1590/S1415-43662010000800005
- RAO TAMMA, G., RAO GURUNADHA, S. V. V. S., RATNAKAR, D., RAO MALLIKHARJUNA, S. T., RAO RAJA, B. M. (2012). Remote Sensing and GIS Based Comparative Morphometric Study of Two Sub-Watershed of Different Physiographic Conditions, West Godavari District, A.P. Journal Geological Society of India, 79(4), 383-390. http://dx.doi.org/10.1007/s12594-012-0059-2
- ROSS, J. L. S. (1992). O registro cartográfi co dos fatos geomórfi cos e a questão da taxonomia do relevo. Revista do Departamento de Geografia, 6 (1), 17-30. https://doi.org/10.7154/RDG.1992.0006.0002
- ROSS, J. L. S. (1994). Análise empírica da fragilidade dos ambientes naturais antropizados. Revista do departamento de geografia, 8 (1), 63-74. https://doi.org/10.7154/RDG.1994.0008.0006
- SARMA, P. K., SARMAH, K., CHETRI, P. K., SARKAR, A. (2013). Geospatial study on morphometric characterization of Umtrew River basin of Meghalaya, India. Int J Water Resour Environ Eng 5 (8), 489–498. https://doi.org/10.5897/IJWREE2012.0367
- TALANI, R. (1997). Laboratory manual for cartography and topography, Shkodër, Camaj-Pipa, 62 (In Albanian).
- THAKKAR, A. K., DHIMAN, S. D. (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 35(4), 313–321. https://doi.org/10.1007/BF02990787
- TOBLER, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(1). https://doi.org/10.2307/143141
- XIE, Y., CHEN, T-B., LEI, M., YANG, J., GUO, Q-J., SONG, B., ZHOU, X-Y. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere, 82 (3), 469. https://doi.org/10.1016/j.chemosphere.2010.09.053