FOLIA GEOGRAPHICA

Folia Geographica 2021, 63/2, pp. 24-37

ANALYSIS OF THE 19 JUNE 2016 SUPERCELL STORM OVER TÂRGU MUREȘ CITY, ROMÂNIA

Ion BUGLEA A*, Marius CIGHER B

Received: June 3, 2021 | Revised: September 7, 2021 | Accepted: October 2, 2021

Paper No. 21-63/2-599


A* University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania

https://orcid.org/0000-0002-5407-3008
bugle9@hotmail.com (corresponding author)

B Dimitrie Cantemir University, 3-5 Bodoni Sandor Street, 540545 Târgu Mureș, Romania

https://orcid.org/0000-0002-2702-7874
cighermarius@yahoo.com



FULL TEXT


Abstract
One of the most complex mesoscale atmospheric phenomena is the supercell. In most cases it is associated with violent convective processes such as: wind intensifications that can exceed 100 km/h, high electrical activity, large hail and torrential rains in short periods of time. Such an extremely severe convective phenomenon occurred on June 19, 2016, over the city of Târgu Mureș, being the subject of this analysis. For the analysis of synoptic and mesoscale phenomena were consulted: ground and altitude maps of Global Forecast System (GFS) models, European Center for Mid-Range Weather Forecasts (ECMWF), Zentraanstalt fur Meterologie und Geodynamik (ZAMG), COSMO, ESTOFEX , Târgu Mureș Skew – T diagram, observation data from the local meteorological station, satellite images (Meteosat 08) and meteorological data from the archive of the National Meteorological Administration (ANM) and images captured by the WSR 98D Bobohalma meteorological radar. The aim of this study is to identify aspects of the structure, evolution and movement of the supercell in order to understand the synoptic and mesoscale conditions to identify the characteristic features of severe phenomena that could contribute to the effectiveness of nowcasting warnings.

Key words Supercell, mesoscale convective system, Skew-T, low level jet, hail.


REFERENCES

  1. ALBERONI, P.P., NANNI, S., CRESPI, M. & MONAI, M. (1996). The supercell thunderstorm on 8 June 1990, Mesoscale analysis and radar observations. Meteorol. and Atmos Phys., 58:123-138.
  2. ALLEN, J. T., AND D. J. KAROLY, (2014). A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 81–97, https://doi.org/10.1002/joc.3667.
  3. ALLEN, J. T., (2018). Climate change and severe thunderstorms. Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.62.
  4. ANTHES, R. A., Y. H. KUO, D. P. BAUMHEFNER, R. M. ERRICO, AND T. W. BETTGE, (1985). Predictability of mesoscale atmospheric motions. Adv. Geophys., 28B, 159–202.
  5. BENGTSSON, L., AND K. I. HODGES, (2006). A note on atmospheric predictability. Tellus, 58A, 154–157.
  6. BETZ, H. D., K. SCHMIDT, P. LAROCHE, P. BLANCHET, W. P. OETTINGER, E. DEFER, Z. DZIEWIT, AND J. KONARSKI, (2009). LINET An international lightning detection network in Europe. Atmos. Res., 91, 564–573, https://doi.org/10.1016/j.atmosres.2008.06.012.
  7. BLAGA, IRINA. (2015). Cantităţi însemnate de precipitaţii în judeţul Cluj. Factori favorizanţi, în revista Ştiinţifică a Administraţiei Naţionale de Meteorologie, Bucureşti ISSN:2069-878X, ISSN-L=2069-878X, http://www.meteoromania.ro/images/raport/revistastiintifica2015.pdf.
  8. BROWNING, K. A., (1962). Cellular structure of convective storms. Meteor. Mag., 91, 341–350.
  9. BROOKS, H. E., (2013). Severe thunderstorms and climate change. Atmos. Res., 123, 129–138, https://doi.org/10.1016/j.atmosres.2012.04.002.
  10. CARBUNARU, D., (2014). Detection of hail through the three-body scattering signatures and its effects on radar algorithms observed in Romania, Atmósfera 27(1), 21-34, DOI:10.1016/S0187-6236(14)71098-7.
  11. CHEN, D., AND M. A. CANE, (2008). El Ni~no prediction and predictability. J. Comput. Phys., 227, 3625–3640.
  12. CINTINEO, J. L., T. M. SMITH, V. LAKSHMANAN, H. E. BROOKS, AND K. L. ORTEGA, (2012). An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 1235–1248, https://doi.org/10.1175/WAF-D-11-00151.1.
  13. DAVINI, P., R. BECHINI, R. CREMONINI, AND C. CASSARDO, (2011). Radar-based analysis of convective storms over northwestern Italy. Atmosphere, 3, 33–58, https://doi.org/10.3390/atmos3010033.
  14. DALCHER, A., AND E. KALNAY, (1987). Error growth and predictability in operational ECMWF forecasts. Tellus, 39, 474–491.
  15. DESSENS, J. & SNOW, J.T. (1993). Comparative description of tornadoes in France and the United States. Geophys. Monogr., 79: Am. Geophys. Union, 427-434.
  16. DOSWELL, C. A., AND D. W. BURGESS, (1993). Tornadoes and tornadic storms. A review of conceptual models. The Tornado: Its Structure, Dynamics, Hazards, and Prediction, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172.
  17. GALANAKI, E., K. LAGOUVARDOS, V. KOTRONI, E. FLAOUNAS, AND A. ARGIRIOU, (2018). Thunderstorm climatology in the Mediterranean using cloud-to-ground lightning observations. Atmos. Res., 207, 136–144, https://doi.org/10.1016/j.atmosres.2018.03.004.
  18. GENSINI, V. A., AND T. L. MOTE, (2015). Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307–321, https://doi.org/10.1007/s10584-014-1320-z.
  19. GEOTIS, S.G. (1963). Some radar measurements of hailstorms. J. Appl. Meteorol., 2: 270-275.
  20. KALTENBÖCK, R., AND M. STEINHEIMER, (2015). Radar-based severe storm climatology for Austrian complex orography related to vertical wind shear and atmospheric instability. Atmos. Res., 158–159, 216–230, https://doi.org/10.1016/j.atmosres.2014.08.006.
  21. KAPSCH, M. L., M. KUNZ, R. VITOLO, AND T. ECONOMOU, (2012). Long-term trends of hail-related weather types in an ensemble of regional climate models using a Bayesian approach. J. Geophys. Res., 117, D15107, https://doi.org/10.1029/2011JD017185.
  22. KIRTMAN, B. P., (2003). The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131, 2324–2341.
  23. KLEMP, J. B., (1987). Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369–402.
  24. LORENZ, E. N., (1982). Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505–513.
  25. MERRITT, J. H., AND J. M. FRITSCH, (1984). On the movement of the heavy precipitation areas of mid-latitude mesoscale convective complexes. Preprints, 10th Conference on Weather Forecasting and Analysis, Tampa, Fla., American Meteorological Society, Boston.
  26. MOLTENI, F., AND T. N. PALMER, (1993). Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269–298.
  27. PAPAGIANNAKI, K., K. LAGOUVARDOS, AND V. KOTRONI, (2013). A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011. Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013.
  28. PAPAGIANNAKI, K., V. KOTRONI, K. LAGOUVARDOS, I. RUIN, AND A. BEZES, (2017). Urban area response to flash flood–triggering rainfall, featuring human behavioral factors: The case of 22 October 2015 in Attica, Greece. Wea. Climate Soc., 9, 621–638, https://doi.org/10.1175/WCAS-D-16-0068.1.
  29. POHJOLA, H., A. MÄKELÄ, (2013). The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res., 123, 117–128, https://doi.org/10.1016/j.atmosres.2012.10.019.
  30. RECKERTH U. D., (2015). Correlations between hail events and radar echoes in Transylvania., Aerul și Apa. Componente ale Mediului pp.413–420, DOI: 10.17378/AWC2015_54.
  31. ROTUNNO, R., AND J. B. KLEMP, (1982). The influence of the shear shearinduced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.
  32. SCHLESINGER, R. E., (1980). A three-dimensional numerical model of an isolated thunderstorm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–420.
  33. SEELEY, J. T., AND D. M. ROMPS, (2015). The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 2443–2458, https://doi.org/10.1175/JCLI-D-14-00382.1.
  34. SOLARI, G., (2014). Emerging issues and new frameworks for wind loading on structures in mixed climates. Wind Struct. 19, 295–320.
  35. SOLARI, G., (2020). Thunderstorm downburst and wind loading of structures: progress and prospect. Front. Built Environ. 6 (63), 1–24.
  36. TASZAREK, M., ALLEN, J., PÚČIK, T., GROENEMEIJER, P., CZERNECKI, B., KOLENDOWICZ, L., LAGOUVARDOS, K., KOTRONI, V., & SCHULZ, W. (2015). A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. Journal of Climate, 32(6), 1813-1837. Retrieved May 26, 2021, from https://journals.ametsoc.org/view/journals/clim/32/6/jcli-d-18-0372.1.xml.
  37. TERTI, G., I. RUIN, S. ANQUETIN, AND J. J. GOURLEY, (2017). A situation based analysis of flash flood fatalities in the United States. Bull. Amer. Meteor. Soc., 98, 333–345, https://doi.org/10.1175/BAMS-D-15-00276.1.
  38. THOM, D., SEIDL , R., (2015). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews. Doi: 10.1111/brv.12193.
  39. THOMPSON, R. L., (1998). Eta model storm-relative winds associated with tornadic and nontornadic supercells. Wea. Forecasting, 13, 125–137.
  40. TRAPP, R. J., N. S. DIFFENBAUGH, H. E. BROOKS, M. E. BALDWIN, E. D. ROBINSON, AND J. S. PAL, (2007). Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 719–19 723, https://doi.org/10.1073/pnas.0705494104.
  41. VIRTS, K. S., J. M. WALLACE, M. L. HUTCHINS, AND R. H. HOLZWORTH, (2013). Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 1381–1391, https://doi.org/10.1175/BAMS-D-12-00082.1.
  42. WARNER, T. T., D. KEYSER, AND L. W. UCCELLINI, (1984). Some practical insights into the relationship between initial state uncertainty and mesoscale predictability. Proc. American Institute of Physics Conf., La Jolla, CA, G. Holloway and B. West, Eds., American Institure of Physics, 271–286.
  43. WEISMAN, M. L., AND J. B. KLEMP, (1982). The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.
  44. WU, F., X. CUI, D. L. ZHANG, D. LIU, AND D. ZHENG, (2016). SAFIR- 3000 lightning statistics over the Beijing metropolitan region during 2005–07. J. Appl. Meteor. Climatol., 55, 2613–2633, https://doi.org/10.1175/JAMC-D-16-0030.1.
  45. ZHANG, F., C. SNYDER, AND R. ROTUNNO, (2003). Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185.
  46. ZHANG, F., A. M. ODINS, AND J. W. NIELSEN-GAMMON, (2006). Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149–166.
  47. ZHANG, F., N. BEI, R. ROTUNNO, C. SNYDER, AND C. C. EPIFANIO, (2007). Mesoscale predictability of moist baroclinic waves: Convection permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594.
  48. ZHANG, W., Y. ZHANG, D. ZHENG, L. XU, AND W. LYU, (2018). Lightning climatology over the northwest Pacific region: An 11-year study using data from the World Wide Lightning Location Network. Atmos. Res., 210, 41–57, https://doi.org/10.1016/j.atmosres.2018.04.013.
  49. https://www.metcheck.com/WEATHER/gfscharts_archive.asp (accessed on March 15, 2021)
  50. http://www1.wetter3.de/archiv_gfs_en.html (accessed on March 18, 2021)
  51. https://www.blitzortung.org/en/historical_maps.php?map=10 (accessed on April 16, 2021)
  52. https://www.wetterzentrale.de/reanalysis.php?jaar=2016&maand=6&dag=19&uur=1800&var=4&map=1&model=cfsr (accessed on April 16, 2021)