FOLIA GEOGRAPHICA

Folia Geographica 2019, 61/2, pp. 104-125

LAND USE CHANGE AND ITS IMPACT ON SURFACE RUNOFF FROM SMALL BASINS: A CASE OF RADIŠA BASIN, SLOVAKIA

Matej VOJTEK A*, Jana VOJTEKOVÁ B

Received: June 10, 2019 | Revised: August 11, 2019 | Accepted: September 13, 2019

Paper No. 19-61/2-535



A* Constantine the Philosopher University in Nitra, Trieda A. Hlinku 1, 949 74 Nitra, Slovakia
mvojtek@ukf.sk (corresponding author)

B Constantine the Philosopher University in Nitra, Trieda A. Hlinku 1, 949 74 Nitra, Slovakia
jvojtekova@ukf.sk


PDF FULL TEXT


Abstract
Land use changes in a basin frequently result in an increased surface runoff, which may induce the occurrence of floods or soil erosion. The paper thus aims to estimate and assess the change in surface runoff characteristics based on the analysis of land use change (between the years 1949 and 2017). The research area is represented by the small basin of Radiša watercourse (Western Slovakia). In order to estimate surface runoff, the SCS-CN method, modeling in geographic information systems (GIS) and recorded rainfall data were used. The land use was identified based on aerial imagery (orthophotos) from 1949 and 2017 showing quite significant changes. Arable land decreased the most by more than half (by 15.62%) while the share of forests increased by 4.55%, glades by 3.45% and built-up areas by 3.05%. As for the results of the SCS-CN method, the highest interval of surface runoff depth (27.1-64.4 mm) increased only slightly from 7.27% (in 1949) to 7.57% (in 2017). On the other hand, the lowest values of runoff depth (2.3-3 mm interval) covered most of the basin area in both years (60.65% in 1949 and 64.94% in 2017). The share of high runoff volume values (intervals 20.1-50 m3 and 50.1< m3) on the basin area decreased during the years 1949 and 2017 by 1.95% and by 1.05%, respectively. Based on the results, it can be concluded that the risk of surface runoff in the research area decreased over the studied period.

Key words
Land use, surface runoff, SCS-CN method, GIS, small basin, Slovakia


REFERENCES


  1. AGARWAL, R., GARG, P.K., GARG, R.D. (2013). Remote Sensing and GIS Based Approach for Identification of Artificial Recharge Sites. Water Resources Management, 27, 7, 2671-2689.
  2. ALI, M., KHAN, S.J., ASLAM, I., KHAN, Z. (2011). Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landscape and Urban Planning, 102, 4, 271-279.
  3. ANTAL, J. (1996). Agrohydrológia. Nitra: VES VŠP.
  4. ASHRAF, M., KAHLOWN, M.A., ASHFAQ, A. (2007). Impact of small dams on agriculture and groundwater development: A case study from Pakistan. Agricultural Water Management, 92, 1-2, 90-98.
  5. BOLTIŽIAR, M., OLAH, B., GALLAY, I., GALLAYOVÁ, Z. (2016). Transformation of the Slovak cultural landscape and its recent trends. In Halada, Ľ., Bača, A., Boltižiar, M., eds., Landscape and landscape ecology: proceedings of the 17th International Symposium on Landscape Ecology. Bratislava: Institute of Landscape Ecology SAS, pp. 57-67.
  6. BRATH, A., MONTANARI, A., MORETTI, G. (2006). Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology, 324, 141-153.
  7. BRONSTERT, A., CARRERA, J., KABAT, P., LÜTKEMEIER, S. (eds.). (2005). Coupled Models for the Hydrological Cycle. Integrating Atmosphere, Biosphere and Pedosphere. Berlin, Heidelberg: Springer-Verlag.
  8. CAMORANI, G, CASTELLARIN, A, BRATH, A. (2005). Effects of land-use changes on the hydrologic response of reclamation systems. Physics and Chemistry of the Earth, 30, 8-10, 561-574.
  9. CHEN, X, XU, Y., YIN, Y. (2009). Impact of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208, 1, 1-8.
  10. CHOW, V.T. (1964). Handbook of Applied Hydrology. New York: McGraw-Hill Book Company.
  11. COSTACHE, R., FONTANINE, I., CORODESCU, E. (2014). Assessment of surface runoff depth changes in Sărătel River basin, Romania using GIS techniques. Central European Journal of Geosciences, 6, 3, 363-372.
  12. CRONSHEY, R., McCUEN, R.H., MILLER, N., RAWLS, W., ROBBINS, S., WOODWARD, D. (1986). Urban Hydrology for Small Watersheds (TR-55). Washington: Natural Resources Conservation Service.
  13. DANG, A.T.N., KUMAR, L. (2017). Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city, Vietnam. Geomatics, Natural Hazards and Risk, 8, 2, 1792-1811.
  14. FOHRER, N., HAVERKAMP, S., ECKHARDT, K., FREDE, H.G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, 26, 7-8, 577-582.
  15. GALLAY, I. (2010). Využitie modelovania povrchového odtoku pri hodnotení zraniteľnosti krajiny vo vzťahu k vybraným prírodným hrozbám. Geografický časopis, 62, 2, 109-125.
  16. GRIMALDI, S., PETROSELLI, A., ROMANO, N. (2013). Curve-number/Green-Ampt mixed procedure for streamflow predictions in ungauged basins: parameter sensitivity analysis. Hydrological Processes, 27, 8, 1265-1275.
  17. HENGL, T. (2006). Finding the right pixel. Computers & Geosciences, 32, 9, 1283-1298.
  18. HJELMFELT, A.T. Jr. (1991). Investigation of curve number procedure. Journal of Hydraulic Engineering, 117, 6, 725-737.
  19. HOLMAN, I.P., HOLLIS, J.M., BRAMLEY, M.E., THOMPSON, T.R.E. (2003). The contribution of soil structural degradation to catchment flooding: a preliminary investigation of the 2000 floods in England and Wales. Hydrology and Earth System Sciences, 7, 755-766.
  20. HUTCHINSON, M.F. (1988). Calculation of hydrologically sound digital elevation models. In Third International Symposium on Spatial Data Handling. Sydney: International Geographical Union, pp. 117-133.
  21. IVANOVÁ, M., MICHAELI, E., BOLTIŽIAR, M., FAZEKAŠOVÁ, D. (2013). The analysis of changes ecological stability of landscape in the contrasting region of the mountain range and a lowland. In Ecology, Economics, Education and Legislation: 13th International Multidisciplinary Scientific Geoconference SGEM 2013, Albena, Bulgaria, pp. 925-938.
  22. IZAKOVIČOVÁ, Z., MEDERLY, P., PETROVIČ, F. (2017). Long-Term Land Use Changes Driven by Urbanisation and Their Environmental Effects (Example of Trnava City, Slovakia). Sustainability, 9, 9, 1553.
  23. JAKUBCOVÁ, A., GREŽO, H., HREŠKOVÁ, A., PETROVIČ, F. (2016). Impacts of Flooding on the Quality of Life in Rural Regions of Southern Slovakia. Applied Research in Quality of Life, 11, 1, 221-237.
  24. JANEČEK, M., DOSTÁL, T., DUFKOVÁ KOZLOVSKY, J., DUMBROVSKÝ, M., HŮLA, J., KADLEC, V., KONEČNÁ, J., KOVÁŘ, P., KRÁSA, J., KUBÁTOVÁ, E., KOBZOVÁ, D., KUDRNÁČOVÁ, M., NOVOTNÝ, I., PODHRÁZSKÁ, J., PRAŽAN, J., PROCHÁZKOVÁ, E., STŘEDOVÁ, H., TOMAN, F., VOPRAVIL, J., VLASÁK, J. (2002). Ochrana zemědělské půdy před erozí. Praha: ISV.
  25. JENÍČEK, M. (2007). Modelování vlivu krajinného pokryvu na srážko-odtokové procesy metodou CN křivek. In Povodně a změny v krajině. Praha: PřF UK, pp. 41-50.
  26. JUN, L., CHANGMING, L., ZHONGGEN, W., KANG, L. (2015). Two universal runoff yield models: SCS versus LCM. Journal of Geographical Sciences, 25, 3, 311-318.
  27. KADAM, K.A., KALE, S.S., PANDE, N.N., PAWAR, N.J., SANKHUA, R.N. (2012). Identifying potential rainwater harvesting sites of a semi-arid, Basaltic Region of Western India, using SCS–CN method. Water Resources Management, 26, 9, 2537-2554.
  28. KING, K.W., ARNOLD, J.G., BINGNER, R.L. (1999). Comparison of Green-Ampt and curve number methods on Goodwin Creek Watershed using SWAT. Transactions of the ASAE, 42, 4, 919-925.
  29. LAMBIN, E.F., TURNER, B.L., GEIST, H.J., AGBOLA, S.B., ANGELSEN, A., BRUCE, J.W., COOMES, O.T., DIRZO, R., FISCHER, G., FOLKE, C., GEORGE, P.S., HOMEWOOD, K., IMBERNON, J., LEEMANS, R., LI, X., MORAN, E.F., MORTIMORE, M., RAMAKRISHNAN, P.S., RICHARDS, J.F., SKÅNES, H., STEFFEN, W., STONE, G.D., SVEDIN, U., VELDKAMP, T.A., VOGEL, C., XU, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 4, 261-269.
  30. LANGHAMMER, J., VILÍMEK, V. (2008). Landscape changes as a factor affecting the course and consequences of extreme floods in the Otava river basin, Czech Republic. Environmental Monitoring and Assessment, 144, 1-3, 53-66.
  31. LECHNER, A.M., LANGFORD, W.T., BEKESSY, S.A., JONES, S.D. (2012). Are landscape ecologists addressing uncertainty in their remote sensing data? Landscape Ecology, 27, 9, 1249-1261.
  32. LIESKOVSKÝ, J., KAIM, D., BALÁZS, P., BOLTIŽIAR, M., CHMIEL, M., GRABSKA, E., KIRÁLY, G., KONKOLY-GYURÓ, E., KOZAK, J., ANTALOVÁ, K., KUCHMA, T., MACKOVČIN, P., MOJSES, M., MUNTEANU, C., OSTAFIN, K., OSTAPOWICZ, K., SHANDRA, O., STYCH, P., RADELOFF, V.C. (2018). Historical land use dataset of the Carpathian region (1819–1980). Journal of Maps, 14, 2, 644-651.
  33. LU, D., MAUSEL, P., BRONDÍZIO, E., MORAN, E. (2004). Change Detection Techniques. International Journal of Remote Sensing, 25, 12, 2365-2407.
  34. MAHEĽ, M., KAHAN, Š., GROSS, P., VAŠKOVSKÝ, I., SALAJ, J. (1981). Geologická mapa Strážovských vrchov 1:50 000. Bratislava: Geologický ústav Dionýza Štúra.
  35. MAKEĽ, M., TURBEK, J., PODOLINSKÁ, J., ŠKODA, P. (2003). Stanovenie N-ročných prietokov a N-ročných prietokových vĺn na väčších tokoch (Odvetvová technická norma MŽP SR 3112-1:03)].
  36. MAZÚR, E., LUKNIŠ, M. (1986). Geomorfologické členenie SSR a ČSSR. Časť Slovensko. Bratislava: Slovenská kartografia.
  37. McCUEN, R.H. (1982). A Guide to Hydrologic Analysis Using SCS Methods. New Jersey: Prentice-Hall.
  38. MINISTRY OF ENVIRONMENT OF THE SLOVAK REPUBLIC, (2018). Predbežné hodnotenie povodňového rizika v Slovenskej republike – aktualizácia 2018. Retrieved from: http://www.minzp.sk/files/sekcia-vod/hodnotenie-rizika-2018/phpr_sr2018.pdf. Accessed on 1 June 2019.
  39. MISHRA, S.K., SINGH, V.P. (2003). Soil Conservation Service Curve Number (SCS-CN) Methodology. Dodrecht: Kluwer Academic Publishers.
  40. MISHRA, S.K., SINGH, V.P. (2004). Long-term hydrological simulation based on the soil conservation service curve number. Hydrological Processes, 18, 7, 1291-1313.
  41. MITKOVÁ, V., KOHNOVÁ, S., PEKÁROVÁ, P. (2004). Porovnanie odhadov maximálnych sezónnych prietokov v profile Dunaj – Bratislava. Acta Hydrologica Slovaca, 5, 1, 34-41.
  42. MŁYŃSKI, D., PETROSELLI, A., WAŁEGA, A. (2018). Flood frequency analysis by an event-based rainfall-runoff model in selected catchments of southern Poland. Soil and Water Research, 13, 3, 170-176.
  43. MOGHADASI, N., KARIMIRAD, I., SHEIKH, V. (2017). Assessing the impact of land use changes and rangeland and forest degradation on flooding using watershed modeling system. Journal of Rangeland Science, 7, 93-106.
  44. MORETTI, G., MONTANARI, A. (2008). Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model. Hydrology and Earth System Sciences, 12, 1141-1152.
  45. MUNTEANU, C., KUEMMERLE, T., BOLTIŽIAR, M., LIESKOVSKY, J., MOJSES M., KAIM, D., KONKOLY-GYURO, E., MACKOVČIN, P., MÜLLER, D., OSTAPOWICZ, K., RADELOFF, V.C. (2017). Nineteenth- century land-use legacies affect contemporary land abandonment in the Carpathians. Regional Environmental Change, 11, 8, 2209-2222.
  46. NAGARAJAN, M., BASIL, G. (2014). Remote sensing- and GIS-based runoff modeling with the effect of land-use changes (a case study of Cochin corporation). Natural Hazards, 73, 3, 2023-2039.
  47. PASÁK, V., JANEČEK, M, ŠABATA, M. (1983). Ochrana zemědělské půdy před erozí. Praha: SZN.
  48. PATIL, J.P., SARANGI, A., SINGH, O.P., SINGH, A.K., AHMAD, T. (2008). Development of a GIS Interface for Estimation of Runoff from Watersheds. Water Resources Management, 22, 9, 1221-1239.
  49. PETROSELLI, A., GRIMALDI, S. (2018). Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework. Journal of Flood Risk Management, 11, S1, 197-210.
  50. PETROSELLI, A., VOJTEK, M., VOJTEKOVÁ, J. (2019). Flood mapping in small ungauged basins: a comparison of different approaches for two case studies in Slovakia. Hydrology Research, 50, 1, 379-392.
  51. PETROVIČ, F., STRÁNOVSKÝ, P., MUCHOVÁ, Z., FALŤAN, V., SKOKANOVÁ, H., HAVLÍČEK, M., GÁBOR, M., ŠPULEROVÁ, J. (2017). Landscape-ecological optimization of hydric potential in foothills region with dispersed settlements – a case study of Nová Bošáca, Slovakia. Applied Ecology and Environmental Research, 15, 1, 379-400.
  52. PONCE, V.M., HAWKINS, R.H. (1996). Runoff Curve Number: Has It Reached Maturity?. Journal of Hydrologic Engineering, 1, 1, 11-19.
  53. PRISTAŠ, J., ELEČKO, M., MAGLAY, J., FORDINÁL, K., ŠIMON, L., GROSS, P., POLÁK, M., HAVRILA, M. IVANIČKA, J., HATÁR, J., VOZÁR, J., MELLO, J., NAGY, A. (2000). Geologická mapa Podunajskej nížiny – Nitrianskej pahorkatiny 1:50 000. Bratislava: Geologický ústav Dionýza Štúra.
  54. SANDERS, BF. (2007). Evaluation of on-line DEMs for flood inundation modeling. Advances in Water Resources, 30, 8, 1831-1843.
  55. SINGH, A., (1989). Digital Change Detection Techniques Using Remotely Sensed Data. International Journal of Remote Sensing, 10, 6, 989-1003.
  56. SOLÍN, Ľ., FERANEC, J., NOVÁČEK, J. (2011). Land Cover Changes in Small Catchments in Slovakia During 1990–2006 and Their Effects on Frequency of Flood Events. Natural Hazards, 56, 1, 195-214.
  57. SOLÍN, Ľ., MARTINČÁKOVÁ, M. (2007). Niekoľko poznámok k metodológii tvorby povodňových máp Slovenska. Geografický časopis, 59, 2, 287-307.
  58. SOULIS, K.X., DERCAS, N. (2007). Development of a GIS-based spatially distributed continuous hydrological model and its first application. Water International, 32, 1, 177-192.
  59. SOULIS, K.X., VALIANTZAS, J.D. (2012). SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach. Hydrology and Earth System Sciences, 16, 1001-1015.
  60. STATISTICAL OFFICE OF THE SLOVAK REPUBLIC, (2018). DATAcube. Počet obyvateľov podľa pohlavia – obce (ročne). Retrieved from: http://datacube.statistics.sk/. Accessed on 1 June 2019.
  61. ŠÚRI, M., CEBECAUER, T., HOFIERKA, J. (2003). Digitálne modely reliéfu a ich aplikácie v životnom prostredí. Životné prostredie, 37, 1, 30-35.
  62. TORMA, S., KOCO, Š., VILČEK, J., ČERMÁK, P. (2019). Nitrogen and phosphorus transport in the soil from the point of view of water pollution. Folia Geographica, 61, 1, in press.
  63. UNUCKA, J., HOŘÍNKOVÁ. M., ŘÍHOVÁ, V., ADAMEC, M. (2010). Porovnání metod SCS-CN a Green-Ampt pomocí metod citlivostní analýzy na základe změny indexu předchozí srážky. In XXII sjezd České geografické společnosti, Ostrava: ČGS, pp. 215-221.
  64. VOJTEK, M. (2018). Analysis and assessment of land cover changes and landscape stability in the Nitra river basin (Slovakia). In Useful Geography: Transfer from Research to Practice : Proceedings of 25th Central European Conference. Brno: Masaryk University, pp. 227-236.
  65. VOJTEK, M., VOJTEKOVÁ, J. (2016). GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study. Quaestiones Geographicae, 35, 3, 97-116.
  66. YU, B. (1998). Theoretical justification of SCS-CN method for runoff estimation. Journal of Irrigation Drainage Division, 124, 6, 306-310.