FOLIA GEOGRAPHICA

Folia Geographica 2024, 66/2, pp. 83-119

CHALLENGES AND OPPORTUNITIES FOR ADVANCING ELECTRIC CARSHARING IN CENTRAL EUROPE
The Role of Infrastructure, Policy and Consumer Behavior in the Adoption of E-carsharing in Central Europe

Máté ZAKARA*, Csongor MÁTHÉB, Sándor SZEGEDIC, Olivér Ottó VASD, Gábor HORVÁTHE, Tamás TÓTHF

Received: October 10, 2024 | Revised: November 11, 2024 | Accepted: December 9, 2024
Paper No. 24-66/2-727


A* University of Debrecen, Hungary, H-4032, Debrecen, Hungary
https://orcid.org/0009-0008-6038-169X
zakar.mate4@mailbox.unideb.hu (corresponding author)

B Babeș-Bolyai University, 400347, Cluj-Napoca, Romania
https://orcid.org/0000-0002-5243-2177
csongor.mathe@ubbcluj.ro

C University of Debrecen, Hungary, H-4032, Debrecen, Hungary
https://orcid.org/0000-0003-1918-6397
szegedi.sandor@science.unideb.hu

D University of Debrecen, Hungary, H-4032, Debrecen, Hungary
https://orcid.org/0009-0002-6155-5096
e-vasoli2000@mailbox.unideb.hu

E University of Debrecen, Hungary, H-4032, Debrecen, Hungary
https://orcid.org/0009-0001-1077-5016
horvath.gabor@science.unideb.hu

F University of Debrecen, Hungary, H-4032, Debrecen, Hungary
https://orcid.org/0000-0002-5067-878X
toth.tamas@science.unideb.hu


FULL TEXT


Abstract
Electric carsharing (e-carsharing) systems hold significant potential for promoting sustainable urban mobility in Central Europe, particularly in Hungary, Slovakia, and Romania. Through a comparative analysis of carsharing models, charging infrastructure, and regulatory frameworks, this paper identifies key factors influencing the adoption of e-carsharing. The results demonstrate that while e-carsharing can substantially reduce carbon emissions and alleviate traffic congestion, its widespread implementation faces obstacles such as insufficient charging networks, limited governmental support, and consumer preferences for car ownership. In Central Europe, especially in the countries under examination, car ownership still holds great significance, which hinders the spread of e-carsharing services. Therefore, it is particularly important for e-carsharing services to be competitive, making government incentives necessary. Technological innovations like AI-based fleet management and Vehicle-to-Grid (V2G) systems are essential for improving operational efficiency and sustainability. Policy recommendations emphasize the need for robust government incentives, coherent energy policies, and targeted financial mechanisms to foster the growth and long-term viability of e-carsharing across the region.

Key words Sharing economy, electromobility, carsharing, CEE, V2G, AI, Decision-makers.


REFERENCES

  1. 350 Citylink bicycles on the streets of Bucharest (2024). Available at: Link. (Accessed: 22 November 2024).
  2. ABDELSATTAR, M. et al. (2024). Analysis of Renewable Energy Sources and Electrical Vehicles Integration Into Microgrid.  IEEE Access, 12, pp. 66822–66832. Available at: https://doi.org/10.1109/ACCESS.2024.3399124.
  3. ABDI, H. (2022). A Brief Review of Microgrid Surveys, by Focusing on Energy Management System.  Sustainability, 15(1), p. 284. Available at: https://doi.org/10.3390/su15010284.
  4. ADEYINKA, A.M. et al. (2024). Advancements in hybrid energy storage systems for enhancing renewable energy-to-grid integration.  Sustainable Energy Research, 11(1), p. 26. Available at: https://doi.org/10.1186/s40807-024-00120-4.
  5. ADNAN, M. et al. (2023). Transmission Network Planning in Super Smart Grids: A Survey.  IEEE Access, 11, pp. 77163–77227. Available at: https://doi.org/10.1109/ACCESS.2023.3296152.
  6. AHMED, I. et al. (2023). A Dynamic Optimal Scheduling Strategy for Multi-Charging Scenarios of Plug-in-Electric Vehicles Over a Smart Grid.  IEEE Access, 11, pp. 28992–29008. Available at: https://doi.org/10.1109/ACCESS.2023.3258859.
  7. AHMED, S. et al. (2024). Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview.  Energies, 17(13), p. 3100. Available at: https://doi.org/10.3390/en17133100.
  8. AHSAN, F. et al. (2023). Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review.  Protection and Control of Modern Power Systems, 8(1), p. 43. Available at: https://doi.org/10.1186/s41601-023-00319-5.
  9. ALAM, Md. et al. (2023). Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments.  Energies, 16(2), p. 812. Available at: https://doi.org/10.3390/en16020812.
  10. ALANAZI, F. (2023). Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation.  Applied Sciences, 13(10), p. 6016. Available at: https://doi.org/10.3390/app13106016.
  11. ALANAZI, M. et al. (2024). Developing a Transactive Charging Control Framework for EV Parking Lots Equipped With Battery and Photovoltaic Panels: A MILP Approach.  IEEE Access, 12, pp. 108731–108743. Available at: https://doi.org/10.1109/ACCESS.2024.3439212.
  12. Al-CHALABI, M. AND BANISTER, D. (2022). The Missing Link? Insights from an Innovative Feedback Exercise for Household Electricity and Travel Behaviour.  Sustainability, 14(15), p. 9115. Available at: https://doi.org/10.3390/su14159115.
  13. ALFAVERH, K., ALFAVERH, F. AND SZAMEL, L. (2023). Plugged-in electric vehicle-assisted demand response strategy for residential energy management.  Energy Informatics, 6(1), p. 6. Available at: https://doi.org/10.1186/s42162-023-00260-9.
  14. AL-GHAILI, A.M. et al. (2022). Can electric vehicles be an alternative for traditional fossil-fuel cars with the help of renewable energy sources towards energy sustainability achievement?.  Energy Informatics, 5(S4), p. 60. Available at: https://doi.org/10.1186/s42162-022-00234-3.
  15. ALI, A. et al. (2024). A Comprehensive Review on Charging Topologies and Power Electronic Converter Solutions for Electric Vehicles.  Journal of Modern Power Systems and Clean Energy, 12(3), pp. 675–694. Available at: https://doi.org/10.35833/MPCE.2023.000107.
  16. ALMUTAIRI, A. et al. (2023). Electric Vehicle Load Estimation at Home and Workplace in Saudi Arabia for Grid Planners and Policy Makers.  Sustainability, 15(22), p. 15878. Available at: https://doi.org/10.3390/su152215878.
  17. ALPÍZAR-CASTILLO, J., RAMIREZ-ELIZONDO, L. AND BAUER, P. (2022). Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review.  Energies, 16(1), p. 379. Available at: https://doi.org/10.3390/en16010379.
  18. AMAMRA, S.-A. AND MARCO, J. (2019). Vehicle-to-Grid Aggregator to Support Power Grid and Reduce Electric Vehicle Charging Cost.  IEEE Access, 7, pp. 178528–178538. Available at: https://doi.org/10.1109/ACCESS.2019.2958664.
  19. ANASTASIADOU, K. AND GAVANAS, N. (2022). State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers.  Energies, 15(24), p. 9409. Available at: https://doi.org/10.3390/en15249409.
  20. ANNAMRAJU, A. AND NANDIRAJU, S. (2019a). Coordinated control of conventional power sources and PHEVs using jaya algorithm optimized PID controller for frequency control of a renewable penetrated power system.  Protection and Control of Modern Power Systems, 4(1), p. 28. Available at: https://doi.org/10.1186/s41601-019-0144-2.
  21. ANNAMRAJU, A. and Nandiraju, S. (2019b). Robust frequency control in a renewable penetrated power system: an adaptive fractional order-fuzzy approach.  Protection and Control of Modern Power Systems, 4(1), p. 16. Available at: https://doi.org/10.1186/s41601-019-0130-8.
  22. ARANDHAKAR, S. et al. (2022). Emerging Intelligent Bidirectional Charging Strategy Based on Recurrent Neural Network Accosting EMI and Temperature Effects for Electric Vehicle.  IEEE Access, 10, pp. 121741–121761. Available at: https://doi.org/10.1109/ACCESS.2022.3223443.
  23. BAKARE, M.S. et al. (2023). A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction.  Energy Informatics, 6(1), p. 4. Available at: https://doi.org/10.1186/s42162-023-00262-7.
  24. BENYSEK, G. et al. (2022). Electric Vehicles Charging Algorithm with Peak Power Minimization, EVs Charging Power Minimization, Ability to Respond to DR Signals and V2G Functionality.  Energies, 15(14), p. 5195. Available at: https://doi.org/10.3390/en15145195.
  25. BERKES, A. AND KESHAV, S. (2024). SPAGHETTI: a synthetic data generator for post-Covid electric vehicle usage.  Energy Informatics, 7(1), p. 15. Available at: https://doi.org/10.1186/s42162-024-00314-6.
  26. BERNAL-SANCHO, M. et al. (2023). Grid Impact of Frequency Regulation Provided by V2Gs Aggregated at HV, MV, and LV Level.  IEEE Access, 11, pp. 76768–76780. Available at: https://doi.org/10.1109/ACCESS.2023.3296220.
  27. BHUNDAR, H.S., GOLAB, L. AND KESHAV, S. (2023). Using EV charging control to provide building load flexibility.  Energy Informatics, 6(1), p. 5. Available at: https://doi.org/10.1186/s42162-023-00261-8.
  28. BOGDANOVA, O., VISKUBA, K. AND ZEMĪTE, L. (2023). A Review of Barriers and Enables in Demand Response Performance Chain.  Energies, 16(18), p. 6699. Available at: https://doi.org/10.3390/en16186699.
  29. BOHDANOWICZ, Z., KOWALSKI, J. AND BIELE, C. (2022). Intentions to Charge Electric Vehicles Using Vehicle-to-Grid Technology among People with Different Motivations to Save Energy.  Sustainability, 14(19), p. 12681. Available at: https://doi.org/10.3390/su141912681.
  30. BORGHETTI, F. et al. (2023). A Quantitative Method to Assess the Vehicle-To-Grid Feasibility of a Local Public Transport Company.  IEEE Access, 11, pp. 55644–55656. Available at: https://doi.org/10.1109/ACCESS.2023.3279713.
  31. BOUDMEN, K. et al. (2024). Electric vehicles, the future of transportation powered by machine learning: a brief review.  Energy Informatics, 7(1), p. 80. Available at: https://doi.org/10.1186/s42162-024-00379-3.
  32. BRHANE, G.Y., OH, E. AND SON, S.-Y. (2024). Virtual Energy Storage System Scheduling for Commercial Buildings with Fixed and Dynamic Energy Storage.  Energies, 17(13), p. 3292. Available at: https://doi.org/10.3390/en17133292.
  33. BRIDI, R.M. et al. (2024). The Propensity to Adopt Electric Vehicles in the United Arab Emirates: An Analysis of Economic and Geographic Factors.  Sustainability, 16(2), p. 770. Available at: https://doi.org/10.3390/su16020770.
  34. BRIGUGLIO, M. AND FORMOSA, G. (2023). Sharing Is Caring: An Economic Analysis of Consumer Engagement in an Electric Vehicle Sharing Service.  Sustainability, 15(6), p. 5502. Available at: https://doi.org/10.3390/su15065502.
  35. Case study – Car Sharing (2024). Available at: https://cangomobility.com/use-cases/case-study-car-sharing/ (Accessed: 22 November 2024).
  36. CHAMBERLAIN, K. AND MAJEED, S.A. (2022). A Novel Model to Predict Electric Vehicle Rapid Charging Deployment on the UK Motorway Network.  Vehicles, 4(2), pp. 567–585. Available at: https://doi.org/10.3390/vehicles4020033.
  37. CHEN, Y.-A. et al. (2024). Cost-Optimal Aggregated Electric Vehicle Flexibility for Demand Response Market Participation by Workplace Electric Vehicle Charging Aggregators.  Energies, 17(7), p. 1745. Available at: https://doi.org/10.3390/en17071745.
  38. CHOU, C.-C. et al. (2023). Co-evolution of Smart Small Vehicles and Human Spatial Experiences: Case Study on Battery-Sharing Electric Two-Wheelers Experiment.  Sustainability, 15(20), p. 15171. Available at: https://doi.org/10.3390/su152015171.
  39. CHRISTENSEN, K. et al. (2021). Methodology for identifying technical details of smart energy solutions and research gaps in smart grid: an example of electric vehicles in the energy system.  Energy Informatics, 4(S2), p. 38. Available at: https://doi.org/10.1186/s42162-021-00160-w.
  40. COBAN, H. et al. (2022). Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System.  Energies, 15(21), p. 8218. Available at: https://doi.org/10.3390/en15218218.
  41. CZARNECKA, M. et al. (2022). Social Media Engagement in Shaping Green Energy Business Models.  Energies, 15(5), p. 1727. Available at: https://doi.org/10.3390/en15051727.
  42. DALYAC, C. et al. (2021). Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles.  EPJ Quantum Technology, 8(1), p. 12. Available at: https://doi.org/10.1140/epjqt/s40507-021-00100-3.
  43. DARANI, Z.H. et al. (2021). Conceptualization of a new generation of smart energy systems and the transition toward them using anticipatory systems.  European Journal of Futures Research, 9(1), p. 15. Available at: https://doi.org/10.1186/s40309-021-00184-1.
  44. DARWISH, A., ELGENEDY, M.A. AND WILLIAMS, B.W. (2024). A Review of Modular Electrical Sub-Systems of Electric Vehicles.  Energies, 17(14), p. 3474. Available at: https://doi.org/10.3390/en17143474.
  45. DEMIRCI, A. et al. (2023). A Comprehensive Data Analysis of Electric Vehicle User Behaviors Toward Unlocking Vehicle-to-Grid Potential.  IEEE Access, 11, pp. 9149–9165. Available at: https://doi.org/10.1109/ACCESS.2023.3240102.
  46. DEMIRCI, A. et al. (2024). A Novel Electric Vehicle Charging Management With Dynamic Active Power Curtailment Framework for PV-Rich Prosumers.  IEEE Access, 12, pp. 120239–120249. Available at: https://doi.org/10.1109/ACCESS.2024.3450799.
  47. DORJI, S. et al. (2023). An Extensive Critique on Smart Grid Technologies: Recent Advancements, Key Challenges, and Future Directions.  Technologies, 11(3), p. 81. Available at: https://doi.org/10.3390/technologies11030081.
  48. EAFO Number of Charging Points in Romania (2024). Available at: https://alternative-fuels-observatory.ec.europa.eu/transport-mode/road/romania/infrastructure (Accessed: 22 November 2024).
  49. EAFO Number of Charging Points in Slovakia (2024). Available at: https://alternative-fuels-observatory.ec.europa.eu/transport-mode/road/slovakia/infrastructure (Accessed: 22 November 2024).
  50. EL-HENDAWI, M., WANG, Z. AND LIU, X. (2022). Centralized and Distributed Optimization for Vehicle-to-Grid Applications in Frequency Regulation.  Energies, 15(12), p. 4446. Available at: https://doi.org/10.3390/en15124446.
  51. ESFANDI, S. et al. (2024). Smart Cities and Urban Energy Planning: An Advanced Review of Promises and Challenges.  Smart Cities, 7(1), pp. 414–444. Available at: https://doi.org/10.3390/smartcities7010016.
  52. Finally Here: MOL Limo Strengthens Fleet with Suzuki (2024). Available at: https://www.suzuki.hu/corporate/hu/hirek/vegre-megerkezett-suzukival-erosit-a-mol-limo (Accessed: 22 November 2024).
  53. FU, X. et al. (2022). Planning of distributed renewable energy systems under uncertainty based on statistical machine learning.  Protection and Control of Modern Power Systems, 7(1), p. 41. Available at: https://doi.org/10.1186/s41601-022-00262-x.
  54. GALAN, J.I. AND ZUÑIGA‐VICENTE, J.A. (2023). Discovering the key factors behind multi‐stakeholder partnerships for contributing to the achievement of sustainable development goals: Insights around the electric vehicle in Spain.  Corporate Social Responsibility and Environmental Management, 30(2), pp. 829–845. Available at: https://doi.org/10.1002/csr.2391.
  55. GARCÍA, M.A. et al. (2023). SGAM-Based Analysis for the Capacity Optimization of Smart Grids Utilizing e-Mobility: The Use Case of Booking a Charge Session.  Energies, 16(5), p. 2489. Available at: https://doi.org/10.3390/en16052489.
  56. GHATIKAR, G. AND ALAM, M.S. (2023). Technology and economics of electric vehicle power transfer: insights for the automotive industry.  Energy Informatics, 6(1), p. 46. Available at: https://doi.org/10.1186/s42162-023-00300-4.
  57. GHOTGE, R. et al. (2022). Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?.  Energies, 15(13), p. 4907. Available at: https://doi.org/10.3390/en15134907.
  58. GIANNELOS, S. et al. (2024). Vehicle-to-Grid: quantification of its contribution to security of supply through the F-Factor methodology.  Sustainable Energy Research, 11(1), p. 32. Available at: https://doi.org/10.1186/s40807-024-00125-z.
  59. GIORDANO, F., DIAZ-LONDONO, C. AND GRUOSSO, G. (2023). Comprehensive Aggregator Methodology for EVs in V2G Operations and Electricity Markets.  IEEE Open Journal of Vehicular Technology, 4, pp. 809–819. Available at: https://doi.org/10.1109/OJVT.2023.3323087.
  60. GOH, H.H. et al. (2022). Orderly Charging Strategy Based on Optimal Time of Use Price Demand Response of Electric Vehicles in Distribution Network.  Energies, 15(5), p. 1869. Available at: https://doi.org/10.3390/en15051869.
  61. GOMES, I., MELICIO, R. AND MENDES, V. (2020). Comparison between Inflexible and Flexible Charging of Electric Vehicles—A Study from the Perspective of an Aggregator.  Energies, 13(20), p. 5443. Available at: https://doi.org/10.3390/en13205443.
  62. Green Car Europe Zrt. Audited Annual Report (2023). Available at: https://webshop.opten.hu/greengo-car-europe-zrt-c0110141666.html (Accessed: 22 November 2024).
  63. HAN, H. AND SUN, S. (2024). Identifying Heterogeneous Willingness to Pay for New Energy Vehicles Attributes: A Discrete Choice Experiment in China.  Sustainability, 16(7), p. 2949. Available at: https://doi.org/10.3390/su16072949.
  64. HASSAN, M.H. et al. (2024). Stochastic Optimal Power Flow Integrating With Renewable Energy Resources and V2G Uncertainty Considering Time-Varying Demand: Hybrid GTO-MRFO Algorithm.  IEEE Access, 12, pp. 97893–97923. Available at: https://doi.org/10.1109/ACCESS.2024.3425754.
  65. HASSLER, J. et al. (2021). Optimization and Coordination of Electric Vehicle Charging Process for Long-Distance Trips.  Energies, 14(13), p. 4054. Available at: https://doi.org/10.3390/en14134054.
  66. ‘High Power Density EV Integrated Fast Battery Chargers Based on the General Torque Cancelation Law for Three-Phase Motors’ (2024) CSEE Journal of Power and Energy Systems [Preprint]. Available at: https://doi.org/10.17775/CSEEJPES.2022.00140.
  67. HOLLY, S. et al. (2020). Flexibility management and provision of balancing services with battery-electric automated guided vehicles in the Hamburg container terminal Altenwerder.  Energy Informatics, 3(S1), p. 26. Available at: https://doi.org/10.1186/s42162-020-00129-1.
  68. HORVÁTH, G. et al. (2023). A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe.  Energies, 16(14), p. 5421. Available at: https://doi.org/10.3390/en16145421.
  69. HOSSAIN, J. et al. (2023). A Review on Optimal Energy Management in Commercial Buildings.  Energies, 16(4), p. 1609. Available at: https://doi.org/10.3390/en16041609.
  70. HU, R. AND HAN, X. (2023). Toward a “Smart-Green” Future in Cities: System Dynamics Study of Megacities in China.  Energies, 16(17), p. 6395. Available at: https://doi.org/10.3390/en16176395.
  71. HUANG, Z., FANG, B. AND DENG, J. (2020). Multi-objective optimization strategy for distribution network considering V2G-enabled electric vehicles in building integrated energy system.  Protection and Control of Modern Power Systems, 5(1), p. 7. Available at: https://doi.org/10.1186/s41601-020-0154-0.
  72. ICAZA, D. et al. (2023). Analysis of Smart Energy Systems and High Participation of V2G Impact for the Ecuadorian 100% Renewable Energy System by 2050.  Energies, 16(10), p. 4045. Available at: https://doi.org/10.3390/en16104045.
  73. ICAZA-ALVAREZ, D. et al. (2023). Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050.  Energies, 16(20), p. 7121. Available at: https://doi.org/10.3390/en16207121.
  74. Introduction to Lime (2024). Available at: https://www.li.me/why/sustainability (Accessed: 22 November 2024).
  75. Introduction to MOL Bubi (2024). Available at: https://molbubi.hu/hu/about/ (Accessed: 22 November 2024).
  76. Introduction to Sharecar.sk (2024). Available at: https://www.sharecar.sk/en/about-us/ (Accessed: 22 November 2024).
  77. Introduction to Tier (2024). Available at: https://www.tier.app/hu/sustainability (Accessed: 22 November 2024).
  78. Introduction to Wigo (2024). Available at: https://www.wigomobility.com/en/carsharing/get-to-know-wigo (Accessed: 22 November 2024).
  79. INVERS GmbH (2024): INVERS Mobility Barometer. European Car Sharing (2024). Available at: https://invers.com/en/press-releases/invers-mobility-barometer-reports-14-fleet-size-growth-in-european-car-sharing-market/ (Accessed: 22 November 2024).
  80. JAFARI KALEYBAR, H. et al. (2024). Smart AC-DC Coupled Hybrid Railway Microgrids Integrated with Renewable Energy Sources: Current and Next Generation Architectures.  Energies, 17(5), p. 1179. Available at: https://doi.org/10.3390/en17051179.
  81. JAKIMOWICZ, A. (2022). The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism.  Energies, 15(23), p. 9109. Available at: https://doi.org/10.3390/en15239109.
  82. JAMAN, S. et al. (2023). Development and Validation of an Integrated EV Charging Station With Grid Interfacing Inverter for Residential Application.  IEEE Access, 11, pp. 115751–115774. Available at: https://doi.org/10.1109/ACCESS.2023.3323219.
  83. JIANG, X. et al. (2023). Optimized Dispatching Method for Flexibility Improvement of AC-MTDC Distribution Systems Considering Aggregated Electric Vehicles.  Journal of Modern Power Systems and Clean Energy, 11(4), pp. 1857–1867. Available at: https://doi.org/10.35833/MPCE.2022.000576.
  84. KHAN, H. AND MASOOD, T. (2022). Impact of Blockchain Technology on Smart Grids.  Energies, 15(19), p. 7189. Available at: https://doi.org/10.3390/en15197189.
  85. KHAN, M.R. et al. (2024). A Comprehensive Review of Microgrid Energy Management Strategies Considering Electric Vehicles, Energy Storage Systems, and AI Techniques.  Processes, 12(2), p. 270. Available at: https://doi.org/10.3390/pr12020270.
  86. KORÕTKO, T. et al. (2023). Assessment of Power System Asset Dispatch under Different Local Energy Community Business Models.  Energies, 16(8), p. 3476. Available at: https://doi.org/10.3390/en16083476.
  87. KUNATSA, T., MYBURGH, H.C. AND DE FREITAS, A. (2024). Optimal Power Flow Management for a Solar PV-Powered Soldier-Level Pico-Grid.  Energies, 17(2), p. 459. Available at: https://doi.org/10.3390/en17020459.
  88. KUSZNIER, J. (2023). Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant.  Energies, 16(4), p. 1716. Available at: https://doi.org/10.3390/en16041716.
  89. LAM, A.Y.S., ŁAZARZ, B. AND PERUŃ, G. (2022). Smart Energy and Intelligent Transportation Systems.  Energies, 15(8), p. 2900. Available at: https://doi.org/10.3390/en15082900.
  90. LAZOVIĆ, Đ. AND ĐURIŠIĆ, Ž. (2023). Advanced Flexibility Support through DSO-Coordinated Participation of DER Aggregators in the Balancing Market.  Energies, 16(8), p. 3440. Available at: https://doi.org/10.3390/en16083440.
  91. LEAL FILHO, W. et al. (2021). Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature.  Sustainability, 13(14), p. 7786. Available at: https://doi.org/10.3390/su13147786.
  92. LETHA, S.S. et al. (2023). Power Quality Issues of Electro-Mobility on Distribution Network—An Overview.  Energies, 16(13), p. 4850. Available at: https://doi.org/10.3390/en16134850.
  93. LEWICKI, W., COBAN, H.H. AND WRÓBEL, J. (2024). Integration of Electric Vehicle Power Supply Systems—Case Study Analysis of the Impact on a Selected Urban Network in Türkiye.  Energies, 17(14), p. 3596. Available at: https://doi.org/10.3390/en17143596.
  94. LI, D. et al. (2023). Research on Fractional Order Modeling and PI λ Control Strategy of V2G Two-Stage Bidirectional Converter.  IEEE Open Journal of Power Electronics, 4, pp. 716–726. Available at: https://doi.org/10.1109/OJPEL.2023.3241782.
  95. LI, J., Xing, Y. and Zhang, D. (2022). Planning Method and Principles of the Cloud Energy Storage Applied in the Power Grid Based on Charging and Discharging Load Model for Distributed Energy Storage Devices.  Processes, 10(2), p. 194. Available at: https://doi.org/10.3390/pr10020194.
  96. LI, W. et al. (2023). Tech Giants’ Responsible Innovation and Technology Strategy: An International Policy Review.  Smart Cities, 6(6), pp. 3454–3492. Available at: https://doi.org/10.3390/smartcities6060153.
  97. LIANG, Y., WANG, Z. AND ABDALLAH, A.B. (2022). V2GNet: Robust Blockchain-Based Energy Trading Method and Implementation in Vehicle-to-Grid Network.  IEEE Access, 10, pp. 131442–131455. Available at: https://doi.org/10.1109/ACCESS.2022.3229432.
  98. LIU, T. et al. (2023). Operation-area-constrained Adaptive Primary Frequency Support Strategy for Electric Vehicle Clusters.  Journal of Modern Power Systems and Clean Energy, 11(4), pp. 1982–1994. Available at: https://doi.org/10.35833/MPCE.2023.000233.
  99. LU, D. et al. (2023). An Application Designed for Guiding the Coordinated Charging of Electric Vehicles.  Sustainability, 15(14), p. 10758. Available at: https://doi.org/10.3390/su151410758.
  100. LU, Z. et al. (2024). Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications.  Sustainability, 16(16), p. 6857. Available at: https://doi.org/10.3390/su16166857.
  101. LUO, Y. et al. (2023). Energy Storage Dynamic Configuration of Active Distribution Networks—Joint Planning of Grid Structures.  Processes, 12(1), p. 79. Available at: https://doi.org/10.3390/pr12010079.
  102. MA, T.-Y. AND FANG, Y. (2022). Survey of charging management and infrastructure planning for electrified demand-responsive transport systems: Methodologies and recent developments.  European Transport Research Review, 14(1), p. 36. Available at: https://doi.org/10.1186/s12544-022-00560-3.
  103. MA, Z., CHRISTENSEN, K. AND JØRGENSEN, B.N. (2021). Business ecosystem architecture development: a case study of Electric Vehicle home charging.  Energy Informatics, 4(1), p. 9. Available at: https://doi.org/10.1186/s42162-021-00142-y.
  104. MĄDZIEL, M. AND CAMPISI, T. (2023). Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database.  Energies, 16(3), p. 1437. Available at: https://doi.org/10.3390/en16031437.
  105. MAHANI, K., ANGIZEH, F. AND JAFARI, M.A. (2023). EV Parking Lots for Flexible Energy Sourcing.  IEEE Access, 11, pp. 38770–38782. Available at: https://doi.org/10.1109/ACCESS.2023.3268028.
  106. MALAKHATKA, E. et al. (2024). From use cases to business cases: I-GReta use cases portfolio analysis from innovation management and digital entrepreneurship models perspectives.  Energy Informatics, 7(1), p. 7. Available at: https://doi.org/10.1186/s42162-024-00310-w.
  107. MALYA, P.P. et al. (2021). Electric vehicles as distribution grid batteries: a reality check.  Energy Informatics, 4(S2), p. 29. Available at: https://doi.org/10.1186/s42162-021-00159-3.
  108. MANSO-BURGOS, Á. et al. (2021). Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients.  Sustainability, 13(19), p. 10555. Available at: https://doi.org/10.3390/su131910555.
  109. MAZHAR, T. et al. (2023). Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods.  Sustainability, 15(3), p. 2603. Available at: https://doi.org/10.3390/su15032603.
  110. MEKH Charging Points (2024). Available at: https://terkep.mekh.hu/elektromobilitas/ (Accessed: 22 November 2024).
  111. MICHALSKI, M., POLAŃSKI, J. AND NEMŚ, M. (2024). Storing Electric Energy Generated by a Photovoltaic Installation to Increase Profit from Its Sale—Case Study in Poland.  Sustainability, 16(13), p. 5635. Available at: https://doi.org/10.3390/su16135635.
  112. MINHAS, D.M., MEIERS, J. AND FREY, G. (2022). Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets.  Energies, 15(5), p. 1619. Available at: https://doi.org/10.3390/en15051619.
  113. MOCAK, P. MATLOVICOVA K., MATLOVIC R., PENZES J., PACHURA P., MISHRA P. K., KOSTILNIKOVA K., DEMKOVA M(2022). 15-Minute City Concept as a Sustainable Urban Development Alternative: A Brief Outline of Conceptual Frameworks and Slovak Cities as a Case. Folia Geographica 64(1), pp. 69–89.
  114. MOJUMDER, MD.R.H. et al. (2022). Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery.  Sustainability, 14(21), p. 13856. Available at: https://doi.org/10.3390/su142113856.
  115. MOL Bubi: Budapest’s Greenest Public Transport Solution (2024). Available at: https://bkk.hu/fejlesztesek/osszes-fejlesztesunk/mol-bubi-budapest-legzoldebb-kozossegi-kozlekedesi-eszkoze.8007/ (Accessed: 22 November 2024).
  116. Mol Limitless Mobility Kft. Company Data (2023). Available at: https://www.nemzeticegtar.hu/mol-limitless-mobility-kft-c0109303981.html (Accessed: 22 November 2024).
  117. MOL Limo Car-Sharing Service (2024). Available at: https://molgroup.info/hu/termekek-es-szolgaltatasok/autosok/mol-limo-kozossegi-auto (Accessed: 22 November 2024).
  118. MOL Limo Expands Fleet with Mercedes Vehicles (2018). Available at: https://www.ujbuda.hu/ujbuda/mercedessel-bovul-a-mol-limo-flottaja (Accessed: 22 November 2024).
  119. MORTON, C., ANABLE, J. AND NELSON, J.D. (2016). Assessing the importance of car meanings and attitudes in consumer evaluations of electric vehicles.  Energy Efficiency, 9(2), pp. 495–509. Available at: https://doi.org/10.1007/s12053-015-9376-9.
  120. MULDER, S. AND KLEIN, S. (2024). Techno-Economic Comparison of Electricity Storage Options in a Fully Renewable Energy System.  Energies, 17(5), p. 1084. Available at: https://doi.org/10.3390/en17051084.
  121. MUQBEL, A.M., AL-AWAMI, A.T. AND AL-BUKHAYTAN, A.S. (2024). A Planning Model for an Electric Vehicle Aggregator Providing Ancillary Services to an Unbalanced Distribution Network Considering Contract Design.  IEEE Access, 12, pp. 29035–29048. Available at: https://doi.org/10.1109/ACCESS.2024.3368038.
  122. NAIDU, S. et al. (2024). Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability.  Sustainability, 16(9), p. 3722. Available at: https://doi.org/10.3390/su16093722.
  123. NEAIMEH, M. AND ANDERSEN, P.B. (2020). Mind the gap- open communication protocols for vehicle grid integration.  Energy Informatics, 3(1), p. 1. Available at: https://doi.org/10.1186/s42162-020-0103-1.
  124. NEPAL, J.P. et al. (2022). Blockchain-Based Smart Renewable Energy: Review of Operational and Transactional Challenges.  Energies, 15(13), p. 4911. Available at: https://doi.org/10.3390/en15134911.
  125. NEUMANNOVÁ, M. (2022). Smart Districts: New Phenomenon in Sustainable Urban Development. Case Study of Špitálka in Brno, Czech Republic.  Folia Geographica 64(1), pp. 27–48.
  126. OURAMDANE, O. et al. (2022). Home Energy Management Considering Renewable Resources, Energy Storage, and an Electric Vehicle as a Backup.  Energies, 15(8), p. 2830. Available at: https://doi.org/10.3390/en15082830.
  127. PAI, L. AND SENJYU, T. (2022). A Yearly Based Multiobjective Park-and-Ride Control Approach Simulation Using Photovoltaic and Battery Energy Storage Systems: Fuxin, China Case Study.  Sustainability, 14(14), p. 8655. Available at: https://doi.org/10.3390/su14148655.
  128. PAN, R. et al. (2023). Environmental and Health Benefits of Promoting New Energy Vehicles: A Case Study Based on Chongqing City.  Sustainability, 15(12), p. 9257. Available at: https://doi.org/10.3390/su15129257.
  129. PAŘIL, V. AND VITURKA, M. (2020). Assessment of Priorities of Construction of High-Speed Rail in the Czech Republic in Terms of Impacts on Internal and External Integration.  Review of Economic Perspectives, 20(2), pp. 217–241. Available at: https://doi.org/10.2478/revecp-2020-0010.
  130. PARK, S.-J. et al. (2022). Development of a Fault-Diagnosis System through the Power Conversion Module of an Electric Vehicle Fast Charger.  Energies, 15(14), p. 5056. Available at: https://doi.org/10.3390/en15145056.
  131. PAYAKKAMAS, P., DE KRAKER, J. AND DIJK, M. (2023). Transformation of the Urban Energy–Mobility Nexus: Implications for Sustainability and Equity.  Sustainability, 15(2), p. 1328. Available at: https://doi.org/10.3390/su15021328.
  132. PEDRAM, O. et al. (2023). A Review of Methodologies for Managing Energy Flexibility Resources in Buildings.  Energies, 16(17), p. 6111. Available at: https://doi.org/10.3390/en16176111.
  133. PIETRACHO, R. et al. (2022). Multi-Criterial Assessment of Electric Vehicle Integration into the Commercial Sector—A Case Study.  Energies, 16(1), p. 462. Available at: https://doi.org/10.3390/en16010462.
  134. RAO, J.V.G.R. AND VENKATESHWARLU, S. (2024). Soft-switching dual active bridge converter-based bidirectional on-board charger for electric vehicles under vehicle-to-grid and grid-to-vehicle control optimization.  Journal of Engineering and Applied Science, 71(1), p. 49. Available at: https://doi.org/10.1186/s44147-024-00384-z.
  135. RAVI, S.S. AND AZIZ, M. (2022). Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives.  Energies, 15(2), p. 589. Available at: https://doi.org/10.3390/en15020589.
  136. REDDY, G.H. et al. (2023). Simultaneous Placement of Multiple Rooftop Solar PV Integrated Electric Vehicle Charging Stations for Reliability Benefits.  IEEE Access, 11, pp. 130788–130801. Available at: https://doi.org/10.1109/ACCESS.2023.3335093.
  137. REGO, N., CASTRO, R. AND SILVA, C.S. (2023). Assessment of Current Smart House Solutions: The Case of Portugal.  Energies, 16(22), p. 7469. Available at: https://doi.org/10.3390/en16227469.
  138. RENE, E.A. AND FOKUI, W.S.T. (2024). Artificial intelligence-based optimal EVCS integration with stochastically sized and distributed PVs in an RDNS segmented in zones.  Journal of Electrical Systems and Information Technology, 11(1), p. 1. Available at: https://doi.org/10.1186/s43067-023-00126-w.
  139. ‘Resilience Enhancement of Urban Energy Systems via Coordinated Vehicle-to-grid Control Strategies’ (2023) CSEE Journal of Power and Energy Systems [Preprint]. Available at: https://doi.org/10.17775/CSEEJPES.2022.05270.
  140. RITTER, M. AND SCHANZ, H. (2021). Carsharing Business Models’ Strategizing Mindsets Regarding Environmental Sustainability.  Sustainability, 13(22), p. 12700. Available at: https://doi.org/10.3390/su132212700.
  141. RIZOPOULOS, D. et al. (2022). 5G as an Enabler of Connected-and-Automated Mobility in European Cross-Border Corridors—A Market Assessment.  Sustainability, 14(21), p. 14411. Available at: https://doi.org/10.3390/su142114411.
  142. ROBLEK, V., MEŠKO, M. AND PODBREGAR, I. (2021). Impact of Car Sharing on Urban Sustainability.  Sustainability, 13(2), p. 905. Available at: https://doi.org/10.3390/su13020905.
  143. Romania Car-Sharing Report 2024 (no date). Available at: https://www.statista.com/outlook/mmo/shared-mobility/car-sharing/romania (Accessed: 22 November 2024).
  144. RUDOLPH, F., WERLAND, S. AND JANSEN, U. (2021) Sustainable mobility in Bratislava : an indicator-based assessment ; a short expertise for Greenpeace in Central & Eastern Europe [application/pdf]. Wuppertal Institut für Klima, Umwelt, Energie, p. 794 KB, 32 pages. Available at: https://doi.org/10.48506/OPUS-7761.
  145. SAAD, M., KHAN, M.K. AND AHMAD, M.B. (2022). Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review.  Sustainability, 14(7), p. 3919. Available at: https://doi.org/10.3390/su14073919.
  146. SADHU, K. et al. (2022). Optimal joint operation of coupled transportation and power distribution urban networks.  Energy Informatics, 5(1), p. 35. Available at: https://doi.org/10.1186/s42162-022-00249-w.
  147. SAHA, D., SAIKIA, L.C. AND RAHMAN, A. (2022). Cascade controller based modeling of a four area thermal: gas AGC system with dependency of wind turbine generator and PEVs under restructured environment.  Protection and Control of Modern Power Systems, 7(1), p. 47. Available at: https://doi.org/10.1186/s41601-022-00266-7.
  148. SALEHIMEHR, S., MIRAFTABZADEH, S.M. AND BRENNA, M. (2024). A Novel Machine Learning-Based Approach for Fault Detection and Location in Low-Voltage DC Microgrids.  Sustainability, 16(7), p. 2821. Available at: https://doi.org/10.3390/su16072821.
  149. SALKUTI, S.R. (2023). Advanced Technologies for Energy Storage and Electric Vehicles.  Energies, 16(5), p. 2312. Available at: https://doi.org/10.3390/en16052312.
  150. SARSIA, P. et al. (2023). Driving the Energy Transition: Large-Scale Electric Vehicle Use for Renewable Power Integration.  in RAiSE-2023RAiSE-2023, MDPI, p. 106. Available at: https://doi.org/10.3390/engproc2023059106.
  151. SHABAN, F., SISKOS, P. AND TJORTJIS, C. (2023). Electromobility Prospects in Greece by 2030: A Regional Perspective on Strategic Policy Analysis.  Energies, 16(16), p. 6083. Available at: https://doi.org/10.3390/en16166083.
  152. SHARIDA, A. et al. (2024). Enhanced Inverse Model Predictive Control for EV Chargers: Solution for Rectifier-Side.  IEEE Open Journal of the Industrial Electronics Society, 5, pp. 795–806. Available at: https://doi.org/10.1109/OJIES.2024.3435862.
  153. SHIPMAN, R. et al. (2019). Learning capacity: predicting user decisions for vehicle-to-grid services.  Energy Informatics, 2(1), p. 37. Available at: https://doi.org/10.1186/s42162-019-0102-2.
  154. SINGH, P.P. et al. (2022). Electric Vehicles Charging Infrastructure Demand and Deployment: Challenges and Solutions.  Energies, 16(1), p. 7. Available at: https://doi.org/10.3390/en16010007.
  155. SINHA, P. et al. (2023). Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid.  Energies, 16(6), p. 2924. Available at: https://doi.org/10.3390/en16062924.
  156. Slovakia Car-Sharing Report (2024). Available at: https://www.statista.com/outlook/mmo/shared-mobility/car-sharing/slovakia (Accessed: 22 November 2024).
  157. SORA, J., SERBAN, I. AND PETREUS, D. (2024). Enhancing Microgrid Operation Through Electric Vehicle Integration: A Survey.  IEEE Access, 12, pp. 64897–64912. Available at: https://doi.org/10.1109/ACCESS.2024.3397587.
  158. SOUSA, C. AND COSTA, E. (2022). Types of Policies for the Joint Diffusion of Electric Vehicles with Renewable Energies and Their Use Worldwide.  Energies, 15(20), p. 7585. Available at: https://doi.org/10.3390/en15207585.
  159. SOUSA-DIAS, D. et al. (2024). Enhancing Trust in Transactive Energy with Individually Linkable Pseudonymous Trading Using Smart Contracts.  Energies, 17(14), p. 3568. Available at: https://doi.org/10.3390/en17143568.
  160. SRIVASTAVA, A., MANAS, M. AND DUBEY, R.K. (2023). Electric vehicle integration’s impacts on power quality in distribution network and associated mitigation measures: a review.  Journal of Engineering and Applied Science, 70(1), p. 32. Available at: https://doi.org/10.1186/s44147-023-00193-w.
  161. STAHL, B.C. (2021). Introduction.  in B.C. Stahl (ed.) Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies. Cham: Springer International Publishing, pp. 1–5. Available at: https://doi.org/10.1007/978-3-030-69978-9_1.
  162. STANCHEV, P., VACHEVA, G. AND HINOV, N. (2023). Evaluation of Voltage Stability in Microgrid-Tied Photovoltaic Systems.  Energies, 16(13), p. 4895. Available at: https://doi.org/10.3390/en16134895.
  163. STREPPARAVA, D. et al. (2022). Privacy and Auditability in the Local Energy Market of an Energy Community with Homomorphic Encryption.  Energies, 15(15), p. 5386. Available at: https://doi.org/10.3390/en15155386.
  164. SULTAN, V. et al. (2022). Integration of EVs into the smart grid: a systematic literature review.  Energy Informatics, 5(1), p. 65. Available at: https://doi.org/10.1186/s42162-022-00251-2.
  165. SUN, D. et al. (2020). Integrated human-machine intelligence for EV charging prediction in 5G smart grid.  EURASIP Journal on Wireless Communications and Networking, 2020(1), p. 139. Available at: https://doi.org/10.1186/s13638-020-01752-y.
  166. TAHIR, M., HU, S. AND ZHU, H. (2024). Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen.  Energies, 17(11), p. 2682. Available at: https://doi.org/10.3390/en17112682.
  167. TANTAU, A. et al. (2024). Identification and Analysis of the Key Factors That Influence Power Purchase Agreements on the Road to Sustainable Energy Development.  Sustainability, 16(8), p. 3202. Available at: https://doi.org/10.3390/su16083202.
  168. The Blinkee scooter-sharing service in Budapest has been discontinued (2024). Available at: https://telex.hu/belfold/2024/03/02/megszunik-a-blinkee-city-robogomegoszto-szolgaltatasa-budapesten (Accessed: 22 November 2024).
  169. The European Alternative Fuels Observatory provides comprehensive statistical data on all European Union member states (2024). Available at: https://alternative-fuels-observatory.ec.europa.eu/transport-mode/road (Accessed: 22 November 2024).
  170. TIWARI, A. AND FARAG, H. (2022). Analysis and Modeling of Value Creation Opportunities and Governing Factors for Electric Vehicle Proliferation.  Energies, 16(1), p. 438. Available at: https://doi.org/10.3390/en16010438.
  171. TOMCZEWSKI, A. et al. (2023). Multicriteria Optimisation of the Structure of a Hybrid Power Supply System for a Single-Family Housing Estate in Poland, Taking into Account Different Electromobility Development Scenarios.  Energies, 16(10), p. 4132. Available at: https://doi.org/10.3390/en16104132.
  172. TONIATO, E. et al. (2021). Peak load minimization of an e-bus depot: impacts of user-set conditions in optimization algorithms.  Energy Informatics, 4(S3), p. 23. Available at: https://doi.org/10.1186/s42162-021-00174-4.
  173. UMOREN, I.A., SHAKIR, M.Z. AND AHMADI, H. (2023). VCG-Based Auction for Incentivized Energy Trading in Electric Vehicle Enabled Microgrids.  IEEE Access, 11, pp. 21117–21126. Available at: https://doi.org/10.1109/ACCESS.2023.3249469.
  174. VENKATESAN, M. et al. (2024). Fuzzy Logic Controlled Pulse Density Modulation Technique for Bidirectional Inductive Power Transfer Systems.  IEEE Access, 12, pp. 55184–55200. Available at: https://doi.org/10.1109/ACCESS.2024.3388491.
  175. VENKATESH, N.H. AND RASLAVIČIUS, L. (2024). A National Innovation System Concept-Based Analysis of Autonomous Vehicles’ Potential in Reaching Zero-Emission Fleets.  Technologies, 12(2), p. 26. Available at: https://doi.org/10.3390/technologies12020026.
  176. VILATHGAMUWA, M. et al. (2022). Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure.  Sustainability, 14(5), p. 2796. Available at: https://doi.org/10.3390/su14052796.
  177. WANG, L. et al. (2024). Blockchain-Based Joint Auction Model for Distributed Energy in Industrial Park Microgrids.  Energies, 17(13), p. 3140. Available at: https://doi.org/10.3390/en17133140.
  178. WANG, L. AND ZHOU, B. (2023). Optimal Planning of Electric Vehicle Fast-Charging Stations Considering Uncertain Charging Demands via Dantzig–Wolfe Decomposition.  Sustainability, 15(8), p. 6588. Available at: https://doi.org/10.3390/su15086588.
  179. WANG, X. et al. (2023). A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles.  Energies, 16(17), p. 6317. Available at: https://doi.org/10.3390/en16176317.
  180. WANG, Y. et al. (2024). Carsharing Worldwide: Case Studies on Carsharing Development in China, Europe, Japan, and the United States.  Sustainability, 16(10), p. 3994. Available at: https://doi.org/10.3390/su16103994.
  181. WANG, Z. et al. (2024). Overview of Isolated Bidirectional DC–DC Converter Topology and Switching Strategies for Electric Vehicle Applications.  Energies, 17(10), p. 2434. Available at: https://doi.org/10.3390/en17102434.
  182. Wigo (Wallis Autómegosztó Zrt.) Annual Report (2023). Available at: https://www.nemzeticegtar.hu/nemzeticegtar/cegadat/0110141923/WALLIS-AUTOMEGOSZTO-Zrt (Accessed: 22 November 2024).
  183. WU, W. et al. (2024). Data Drive—Charging Behavior of Electric Vehicle Users with Variable Roles.  Sustainability, 16(11), p. 4842. Available at: https://doi.org/10.3390/su16114842.
  184. XU, B. et al. (2022). Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles.  Protection and Control of Modern Power Systems, 7(1), p. 51. Available at: https://doi.org/10.1186/s41601-022-00271-w.
  185. XU, X. et al. (2024). Distributed Source-Load-Storage Cooperative Low-carbon Scheduling Strategy Considering Vehicle-to-grid Aggregators.  Journal of Modern Power Systems and Clean Energy, 12(2), pp. 440–453. Available at: https://doi.org/10.35833/MPCE.2023.000742.
  186. YANG, A. et al. (2024). Charging Behavior Portrait of Electric Vehicle Users Based on Fuzzy C-Means Clustering Algorithm.  Energies, 17(7), p. 1651. Available at: https://doi.org/10.3390/en17071651.
  187. YAO, R., HU, Y. AND VARGA, L. (2023). Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review.  Energies, 16(5), p. 2456. Available at: https://doi.org/10.3390/en16052456.
  188. YASSINE, Z., MARTIN, E.W. AND SHAHEEN, S.A. (2024). Can Electric Vehicle Carsharing Bridge the Green Divide? A Study of BlueLA’s Environmental Impacts among Underserved Communities and the Broader Population.  Energies, 17(2), p. 356. Available at: https://doi.org/10.3390/en17020356.
  189. ZAHLER, J., VOLLMUTH, P. and OSTERMANN, A. (2024). Unlocking the Potential: An In-Depth Analysis of Factors Shaping the Success of Smart and Bidirectional Charging in a Cross-Country Comparison.  Energies, 17(15), p. 3637. Available at: https://doi.org/10.3390/en17153637.
  190. ZENHOM, I.A., SHAABAN, M.F. and OMRAN, W.A. (2023). Grid Interactive Charging of EVs in PV-Powered Parking Lots Considering Uncertainties.  IEEE Access, 11, pp. 111292–111301. Available at: https://doi.org/10.1109/ACCESS.2023.3322201.
  191. ZHANG, C. et al. (2024). Environmental Awareness and Social Sustainability: Insights from an Agent-Based Model with Social Learning and Individual Heterogeneity.  Sustainability, 16(17), p. 7853. Available at: https://doi.org/10.3390/su16177853.
  192. ZHANG, C., KITAMURA, H. and GOTO, M. (2024). Exploring V2G Potential in Tokyo: The Impact of User Behavior Through Multi-Agent Simulation.  IEEE Access, 12, pp. 118981–119002. Available at: https://doi.org/10.1109/ACCESS.2024.3449448.
  193. ZHOU, F. et al. (2023). Cooperative Game Cooperative Control Strategy for Electric Vehicles Based on Tariff Leverage.  Energies, 16(12), p. 4808. Available at: https://doi.org/10.3390/en16124808.
  194.